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ABSTRACT ]

Inversion of Laplace transforms has been accomplished |
by a numerical integration along appropriate paths in the
complex plane. Two general procedures have been used.

The simpler and more economical employs a simple path, such

as a parabola, which bends to the left. Accuracy is main-

tained by monitoring the oscillation of the integrand. A

second method employs a steepest descent contour.
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I. INTRODUCTION

If F(t) is an integrable function of the real variable

t, the function f(s) defined by the integral

-]

£(s) =[ e St Fet)at (1)

o

is called the Laplace transformation, or the Laplace trans-

form, of F(t) and is frequently indicated by the notation
1(s) =E[F(t)] (2)

The Laplace transformation is a linear integral trans-
formation which is widely used in applied mathematics and
technology. A typical application is as follows. An un-
known function F(t) satisfies a certain differential equa-

tion and specified end conditions. Employing theorems

applicable to the Laplace transform, a function f(s) is
determined as the solution of an algebraic equation which
corresponds, in an appropriate fashion, to the differential
equation and end conditions of F(t). Then the problem is

reduced to the following task: having established f(s),

it is necessary to determine the function F(t) for which

£(s) =L [F(t)].
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This problem is called finding the inverse (Laplace)
transform of the function f(s). This is customarily

written as

F(t) =L (1(s)] (3)

It may be shown that the following inversion integral

F(t) = 2’%& / et £(s)ds

Cc

accomplishes the desired inversion. In this expression

S is the complex variable
s =x + iy (5)

and the integration is along a suitable path in the complex
s-plane.

If in fact there is a function F(t) such that the given
f(s) =¥ [F(t)], then the function determined by equation
(4) is, indeed, the function F(t). The result is unique

in the following sense. If

o

£(s) =/ ¢ 9t F,(t)dt
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% then Fl(t) and Fz(t) differ only on a set of Lebesgue

:5 : measure Zzero.
In this thesis numerical methods will be utilized to

perform the integration of eguation (4) and functions for

which the inversion is successful will correspond to

functions F(t) which are at least piecewise continuous,

o nae

having only isolated discontinuities, if any are present
at all., If F(t) is discontinuous for t = a, then the

recovered function satisfies the condition =

F(a) = % Lim[F(a+e) + F(a-€)] (8)
e =+ 0

The path of integration, indicated by C in equation
(4) is frequently described as an infinitely long, vertical
straight line X = constant, to the right of any singulari-
ties of f(s). (A theorem of complex variables shows that
f(s) is analytic in its region of convergence, a right-hand
plane, except for isolated singularities.) This straight
vertical contour is frequently called the Bromwich contour.

Usually inversion of a Laplace transform, that is find-

ing F(t) =c£"1[f(s)], is accomplished by use of a table of

transform pairs. One of the most complete of these is that
of Roberts and Kaufman [14]. Other such tables are listed

as references [5], [6], [7], and [13].

g e

Several theorems concerning the Laplace transform extend

the usefulness of such transformation pair tables. For

example

P BT e By, &
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L1z () + 1500 =&z ()] +&L L [2,09)]
(9)

P S DU S

However, it is not an infrequent occurrence that one is
called upon to find F(t) in a case where the tables and
the theorems are of no direct help. There has developed
a considerable literature concerning this problem.

One obvious method is to attempt to expand the given

f(s) as a series of functionS‘fi(S)for which the inverses

i s e el e A B i S

are known. Then using the linear property indicated in

equation (9), the result may be expressed as

L-111(s)] =L [za 1, ()] = 12, ()] (10)

The integration indicated in equation (4) can also be
performed by various analytical and approximate methods.
In particular, one can perform the integration along the
Bromwich contour by a numerical procedure. Much of the
literature is devoted to such methods.

In general these methods amount to the following. A 1
finite number of points along the Bromwich contour are 1
determined according to.some law and the integrand is §
evaluated at such points. There are associated weight fac-

tors and the integral is approximated as a sum of products

s il i i

of integrand values times weight factors. One of the most
S . widely used of such methods is described by Salzer [15],

(16], and [17]. Other procedures of the type are treated

in (18], (20], [2], (8], ([e], [10], and [21].




It is interesting to note lhat the same classical poly-
nomials which are useful in the expansions indicated by
equation (10) are also encountered in locating points for
evaluation using a numerical integration scheme so that

the final algorithm may be the same even though the original

motivation was quite different.

Other methods which do not fall clearly into the

classes of methods discussed above have been presented by

a2
P f
i
4
{
|
'
1
' ]
H

Widder [22], and Bellman, Kalaba, and Lockett [3].

These approximate methods have not always been success-

ful. Hiep [12] employed Salzer's method for numerical in-

v S S it 0. i

version on a problem of heat transfer in porous media and
found it difficult to obtain results which did not exhibit 1
physically incorrect behavior, e.g., in the vicinity of a
point of engineering interest, the temperature of the
'2; ! medium fell below sink temperature and rose above source
temperature. In similar work on a conjugated heat transfer
problem Zargary [23] encountered the same difficulty, and,
after devoting considerable time and attention to the prob-
lem, was forced to abandon the use of numerical inversion.
To overcome such difficulties in problems of these
kinds, we have reverted to direct numerical integration of
equation (4) along appropriate contours in the s-plane. 3

Our procedures, which appear taus far to be efficient and

reliable, are described in what follows. 3
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II. DISTORTED CONTOURS

We have found that great advantage accrues from distort-
;w j ing the Bromwich contour in ways which will subsequently
; be described.

According to theorems concerning analytic functions of
a complex variable, the Bromwich contour can be distorted
arbitrarily as long as the process of distortion does not
cause the contour C to cross over a singularity of f(s) and
as long as the two ends of C extend to infinity in a manner |
which preserves the convergence of the integral in equation

(4).

Thus, with the supposition that f(s) is analytic, with |
the excention of isolated singularities, and is real valued f

for real s, let g(s) represent the integrand

st

g(s) = e f(s) = u(s) + iv(s) (11)

where u(s) and vée) are the real and imaginary harmonic
} components of g(s). Furthermore, assume that the contour C
i consists of the two symmetrical parts C* and CMl as shown
in Figure 1. Consideration of the contributions toil'l[f(s)]
over arcs ds1 on C* and ds2 on C** yields the following:

dx, =-dx

2 1

dyp = dy, (12)
u2 = ul

V2 .‘Vl

|
|
%
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FIGURE 1. Distorted Bromwich Contour. Contour i§*
distorted into C* and its reflection C' .

Thus,
==—[g.ds. + g,ds.] = [v,dx, + u.dy.] (13)
on1 8198 T 8205, wlV19%, 1%
| and, therefore,

A=

F(t) = / [vdx + udy] (14)
f *
c

g T

O e
-

Equation (14) is, of course, further simplified if C"l
is selected to be a path along which v=0. Additional
theoretical reasons exist for such a selection. Such a path
% will subsequently be referred to as a path of steepest

descent. Mumerical integration along such a path, or a

_e o Dt Rl el G- e S L

H ; close facsimile thereof, was done by Esch [11] in 1957 and

Carrier, Krook, and Pearson (4] recommended further
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exploration of this procedure. However, no further such in-

vestigation seems to have been done until the present thesis.

In Chapter V, a description of an algorithm for performing
numerical integration along a path C*, for which v=0 over
a substantial portion of its range, will be presented.
Almost by accidental discovery, the present work has
revealed that it is computationally more efficient simply
to make an arbitrary choice for the contour C* which satis-

fies the following criteria:

x
(1) C is a smooth continuous curve of the form

s(p) = x(p) + iy(p)

where p is a real parameter 0 < p < =,

C* lies to the right of all singularities of f(s).
C* does not extend sufficiently far to the right
to cause computational difficulties due to the

factor eSt.

*
C approaches infinity in such a way that x

approaches -» and y approaches «,

Oscillation of the integrand is not excessive.
(Otherwise there may be loss of accuracy due to
the sampling rate of the integration algorithm

seriously mismatching variations in the integrand

and/or positive and negative contributions nearly

cancelling each other.)

Lok O erane s LA SO NI \PAhigns 35 4 ot

Such a contour will be referred to as a simple parameterized

contour. Discussion of how to assure satisfying criteria
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(2), (3), and (5) will be deferred until after the develop-
ment of the actual algorithm,
The integral shown in equation (14) is approximated by

the simple trapezoidal sum

M
F(t) = ﬁ% :E: {[v(sk)+v(sk+1)][xk+1 - x,]
k=1
+ [u(sp)+ulsy Iy - v 1} (16)

where

S = X t iy = X(pk)+ iy(py) (17)

The arbitrarily chosen functions x(p) and y(p) are monotoni-

cally increasing and Pys Pgseces Py is an increasing
sequence.
A very simple example, but one which has been employed

very successfully, is given by the following equations

x = A - Bp2

¥ = (18)
o 0 S G I

The real number A is selected so as to satisfy criteria (2)
and (3) above. The real number B has, usually, been
assigned a value of one.

The sum includes only a finite number of terms. It is

necessary to provide an appropriate criterion for terminat-

ing the process of summation. This will be discussed later.
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In order to monitor the possibility of inaccurate
evaluations resulting from oscillations, in addition to the

sum F(t) given by equation (16), the sum G(t) given by

M
G(t) = g2 D | {Ivsy,)-v(s)] %y, -%,]
k=1

+ [u(syp )+uls )]y, -y, 1} (19)

is also obtained. This is the sum of the absolute values
of the addends to the sum (16). Additionally, the number
of times successive addends are of opnosite signs is
recorded.

The present numerical experiments, to be described
later, were generally so successful that the effect of
oscillation could not be seen. However, in some cases
where poor contours C* were deliberately chosen, it was
found that inaccurate results were obtained if G(t) was

many orders of magnitude (e.g., 106) times as great as F(t).

e e < Vil 14 h
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II1. THE COMPUTER PROGRAM AND
ITS NCIPAL SUBROUTINES

Previous discussion proposed two alternatives in terms

of advantageous distortion of the Bromwich contour upon
which to perform the numerical integration of equation (16).
The simple parameterized curve has been experimentally found
to be the more efficient of the two methods and its algo-
rithm will be developed at this time. The steepest descent
procedure will be treated in Chapter V.

The computer program and subprograms which implement

the simple procedure developed in the preceding chapter are

all written in the FORTRAN language, using double precision
i? arithmetic. They have been tested and debugged on an IBM
ﬁ 360/67. For machines having a larger mantissa, single pre-
cision arithmetic might prove to be satisfactory.

SUBROUTINE VALUE is a user supplied routine which imple-
! | ments computation of the g(s) given by equation (11) for the
desired transform f(s). This subroutine calculates the u(s)
and v(s) corresponding to a given x and y.

Either complex or real arithmetic may be utilized in this

program, although complex arithmetic offers a decided advan-

tage in convenience and simplicity. However, the user

should be aware of the potential dangers in unintentional

exchange of sheets of a Riemann surface when investigating

R e e oo Dnilliie oy

a multi-valued function. More will be said about this later.
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Also, although FORTRAN manuals state or imply that the
FUNCTIONS DREAL and DIMAG are implemented in all compilers,
this may not actually be the case. Accordingly it is prudent
to add the following statements after SUBROUTINE VALUE.

FUNCTION DREAL(CPLX)
REAL*8 CPLX(2)
DREAL = CPLX(1)
RETURN

END

FUNCTION DIMAG(CPLX)
REAL*8 CPLX(2)
DIMAG = CPLX(2)
RETURN

END

SUBROUTINE CURVE is also a user supplied routine which
calculates the x and y values for each consecutive incrementa-
tion of the parameter p of equation (17), thus locating a
point on the simple parameterized contour. Equation (18)
provides an illustrative and highly effective example of
parabolic form which has been employed almost exclusively
during this investigative work.

SUBROUTINE INCREP formulates the increasing sequence of

the parameter p as given by the following equation
peprta (20)

Limited analysis with other than equally spaced incrementa-

tion of points along the contour of integration did not ex-

hibit any enhancing capabilities and was not continued.
The main program accomplishes the integration of equation
(14) using a trapezoidal summation as described by equation

(16). In addition, the absolute value of the integrand is
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summed in accordance with equation (19). Also, the number
of times a sign changes occurs between successive evaluations
of the addend of equation (16) is recorded. These features
afford the user an opportunity to monitor potential oscilla-
tion effects upon the accuracy of the results, Clock time
and the number of calls to SUBROUTINE VALUE required for
performing the numerical contour integration are maintained
as measures of the computational efficiency of the numerical
inversion procedure.

Termination of numerical integration occurs when each
of N sucéessive evaluations of the addend of equation (19)
has magnitude less than a specified epsilon. We have usually
used N = 5. This is a very stringent requirement and could
probably be relaxed resulting in some saving of computational
time and with but minor loss of accuracy.

In addition to the termination criterion described in

the previous paragraph, other program inputs include the

il

increment A of equation (18), appropriate numerical values
of any constants of the function f(s), the starting position
A of equation (18) and the value of t.

The program output prints the starting position of the
integration contour, the values given by equations (16) and
(19), the final values of x and y at the termination of inte-
gration, the number of changes of sign between successive
addends in equation (16), the total number of calls made to

SUBROUTINE VALUE during the process, and the clock time re-

quired for numerical integration.
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As an illustration consider the following example where

£(8) = =y (21)

s +a

A suitable form for SUBROUTINE VALUE is as follows:

SUBROUTINE VALUE (X, Y, T, AL, U, V, MMMMM)

o THIS IS TABLE ENTRY NUMBER 09 OF LAPLACE TRANSFORMS BY SPIEGEL
IMPLICIT REAL*8 (A,B,D-H,0-2)
IMPLICIT COMPLEX*16 (C)
MMMMM = MMMMM + 1
ZERO=0,D+0
CS=DCMPLX(X,Y)
CAL=DCMPLX (AL, ZERO)
CT=DCMPLX(T, ZERO)
CDEN=CS**2+CAL**2
C=CS/CDEN
CEXP=CDEXP(CS*CT)
C=C*CEXP
U=DREAL(C)
V=DIMAG(C)
RETURN
END

(Note: The parameter a is
denoted by the FORTRAN
variable AL,)

If the contour indicated by equation (18) were chosen and
numerical inversion were performed upon the f(s) given by
equation (21) for the case where A = 0.3, A = 0.1, a = 0.125,
N =5 and € = 1.D-11, the evaluation of F(27) would yield the

following output

AA  F(2m) |G(2m)| XF YF LOSC  MMMMM

0.3 7.07107D-1 1.32635D+0 ~5.46 2.4 4 25

where AA, LOSC, and MMMMM are the FORTRAN program names for
the contour starting position, the number of sign changes
between successive addends, and the total number of calls
made to SUBROUTINE VALUE, respectively. Similar results
for the almost 100 functions f(s) tested during the course

0of this research are listed in Appendix B,

21

WREPPEP——
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IV. AUXILIARY SUBROUTINES

Chapter III briefly mentioned the potential dangers in-

herent in the utilization of complex arithmetic within SUB-
ROUTINE VALUE when the function f(s) is multi-valued.

If f(s) has branch points or winding points it is impor-
tant to assure that one remains on the same branch of the
function as one proceeds along the path of integration.
Available FORTRAN operations do not assure this and it is
necessary to employ specially programmed algorithms. The
present discussion is limited to the two simple cases, rais-
ing of a complex number to a non-integer power and taking
the logarithm of a complex number.

The essence of the matter lies in the FORTRAN operation
DATAN2(y,x), or its equivalents, which must be relied upon
to provide the argument of a complex number in polar form.
This operation always provides a result in the range
-m < 8 < m, so that if Arg (2) actually passes through the
values (2n+l1)m, for integer n,:the FORTRAN produced value

of Arg(z) experiences a jump of * 27, If one is determining

the logarithm of z or a non-integer power of z, shifting of

branch will take place unless the continuity of Arg(z) is
restored.

SUBROUTINES CPOWER and CLOG provide for this continuity
by monitoring changes in Arg(z) and adding or subtracting

2nm, whenever it is appropriate to do so, to the value of

T S o e
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DATAN2(y,x).

for up to five separate calls, within SUBROUTINE VALUE, to

either SUBROUTINE CPOWER or SUBROUTINE CLOG.

These subroutines are listed below,
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If either algorithm is to be utilized by SUBROUTINE VALUE,
the first requirement is to zero the applicable integer
array, NCALL or MCALL, within the main program. Then, in
SUBROUTINE VALUE, the calls to SUBROUTINE CPOWER are of

the form

CALL CPOWER(ZIN, ZOUT,P, J,NCALL)

where ZIN is the COMPLEX*16 operand, ZOUT is the COMPLEX*16
output, P is the REAL*8 power, and J is the INTEGER*4 index
which tells whether this is the first, second,..., call to
SUBROUTINE CPOWER within SUBROUTINE VALUE. The relationship

obtained is

zZouT = (zIN)F (22)

SUBROUTINE CLOG is used similarly. Calls made from SUBROUTINE

VALUE are of the form
CALL CLOG(ZIN,ZOUuT, J,MCALL)
where
ZOUT = Ln(ZIN) (23)

J plays the same role as in SUBROUTINE CPOWER, There is no

P. It should be noted that the array MCALL replaces NCALL.




V. THE STEEPEST DESCENT CONTOUR

The theoretical advantages of a steepest descent contour
have been mentioned pnreviously. Consider a contour in the
complex plane along which v=constant. As shown in Figure
2, let the § axis be tangent to the contour with the n axis
perpendicular to the £ axis in the same sense that y is perpen-

dicular to x.

=z

> REAL AXTIS

Figure 2, Steepest Descent Contour. Contour along
which v is constant. Axis & is tangent at
point P. Axis n is normal.

Recall equation (11),

Y of(s) = u(s) + iv(s)

g(s) = e°

By the Cauchy-Riemann relationships
1 SR RN 4, - JU
G - en’ 36 " n

Along a v = constant contour
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Such a v = ¢ = constant contour divides the plane, locally

at least, into two regions: R1 with v > ¢ and R2 with v < c.

Consequently along such a contour %% is one signed, and,

therefore, %% is one signed. u -+ O along the v = ¢ contour,

?f
i
13
18
|
H
!
b
[4
;

in the direction of positive £. Therefore, there is no

oscillation in u and, obviously also, there is none in v,

Since u - 0 and v -+ 0 along a suitable integration contour,

the selection of ¢ = 0 assures that this results.
;, This second program to be discussed does partially follow
a path of steepest descent. First it integrates vertically
upward from a chosen point on the real axis (along a Bromwich
contour) until intersection with a specified v = 0 contour
occurs., Then it employs a tracking algorithm to obtain suc-
cessive points on this contour along which it then integrates,
moving to the left.

SUBROUTINE VALUE has the same role as that described in
Chapter III, namely, it calculates the u(s) and v(s) in

accordance with equation (11) corresponding to a given x and

D ————

Ei | y. For the initial part of the algorithm, the integration
along the Bromwich contour, the valué of x is constant, and
y is increased in increments by Ay. Numerical integration
in accordance with equation (16) is conducted just as it was
done in the previous case.

On the real axis, obviously, v = O, With an initial
incrementation in the vertical direction, v assumes a value
other than zero. The sign of v is recorded and the incrementa-

tion process is continued until the sign of v changes. This

b ’
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constitutes a contour crossing. The procedure continues ]
Qf i until a predetermined number of such crossings are obtained, E
- and then a simple linear interpolation is performed to locate %
- ; the specific ordinate value y for which v = 0. Usually one 3
might wish to use the first v = 0 contour above the real
: axis, but the second, third, or other such contour may be
selected. |
The last (yi,vi) values prior to the desired contour
crossing and the first (yj,vj) values after crossing are

utilized in the linear interpolation process to predict YNEW,

for which v = 0, SUBROUTINE VALUE provides the actual VNEW
value corresponding to YNEW. Depending upon the sign of

VNEW, the appropriate coordinate pair (yi'vi) or (yj,vj) is

replaced by (YNEW,VNEW) and the interpolation is repeated
with this refinement. Termination of the interpolation occurs
when YNEW results in a magnitude of VNEW which is less in
magnitude than a prescribed tolerance limit. |
Once the values of x,y,u, and v have been established

for the first point on the desired v = 0 contour in the pre-
vious process, the second, or tracking portion of the
algorithm commences. t

: SUBROUTINE XMARCH is called to provide a new coordinate

pair (x,y) in the negative sense of the real axis from the

% ; known, or old, coordinate pair (xo,yo). This is accomplished

by the following relationships

XWXy - R cos(8)

FEY* R sin(8)




e i RN A b S NI Ll e e AN R s s P e s i e iy e L il G

.- where (R,0) are the polar coordinates of a search pattern

measured from the known coordinates (xo,yo) on the v = 0

contour. The angle 6 is set at zero radians for the first

call to SUBROUTINE XMARCH. SUBROUTINE VALUE is then called

”y ) to provide the value of v at this point. The sign of v

establishes upon which side of the v = 0 contour the new point ;
lies.

SUBROUTINE ROTATE is then called to increment the angle
theta in an appropriate sense. A sweeping search is then
conducted by SUBROUTINES ROTATE, XMARCH, AND VALUE until
a sign change is detected for v values between increments,
thus, indicating a crossing of the v = 0 contour. |

The last (ei,vi) coordinate pair prior to a crossing and
the first (QJ,Vj) coordinate pair after a crossing are
utilized in a linear interpolation scheme, analogous to that
of the first program segment, to refine the location of the
new point on the v = 0 contour.

Once the second point on the v = 0 contour is established,
the tracking algorithm may be enhanced by predicting the
third point on the contour to lie at the same angle 6 from
the second point. As before, the sign of v at this new loca-
tion permits a rotational search to be conducted in the 5

appropriate sense. For small values of the radius vector

R (R=.025 is built into the program, but may be changed by the

user), this approximation has been found, in general, to be a

reasonable one.

-
SIS N S,

The addends of equations (16) and 19) are evaluated at

each step in the marching process within the main program

1
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and, once again, termination of the numerical integration
occurs when each of N successive addend contributions is
less, than a prescribed epsilon.

Required inputs to the main program are the index speci-
fying the desired v = 0 contour, the starting position on
the real axis, the increment of the vertical march along the
Bromwich contour, the termination criterion, any constants
associated with the function f(s), and the value of t. These
inputs are represented by the program variables NREG, AA,
DELY, EPS, (AL,BE,...), and T, respectively.

The simple parameterized contour offers one decided ad-
vantage over the steepest descent contour: each call made to
SUBROUTINE VALUE is productive, in the former case, in the
sense that it is utilized to compute a contribution of the
addend of equation (16). The latter algorithm requires calls
to SUBROUTINE VALUE to perform the linear interpolation pro-
cedures, which are non-productive in terms of addend computa-
tion. This represents increased computer time. The present
investigation has shown that in each of the numerous cases
which have been examined, the simple parabolic path indicated

by equation (18) is more efficient and fully as accurate as

a steepest descent contour.
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VI. SHANKS' ACCELERATOR

The effectiveness of a family of non-linear sequence to
sequence transformations in accelerating the convergence of
(some) slowly convergent sequences and in inducing conver-
gence in (some) divergent sequences has been reported by
Shanks [19]. 1If {An} (n=0,1,2,...) is a sequence of numbers,
we form a sequence of sequences {Ak,n} which, for convenience,
we write as {A(k,n)}. The integer k indicates the "order"
of the sequence, with An = A(O,n); the integer n indicates
the position of the term in the sequence. The rule for form-

ing the sequence {A(k+1l,n)} from the sequence {A(k,n)} is
A(1,j) =0 if § < 2%

A(k,n)A(k,n-2) - A(k,.n-1)2 (58)
A(k,n)+A(k,n-2)-2A(k,n-1)

A(k+1l,n) =

n=2k+3,2k+4,....
To illustrate the power of this computational device con-
sider the application of equation (28) and its iterates to

the first ten terms of the alternating series

Ln(2) = 1 - 3 + -3+ . (29)

The results are

e N Y I
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n A(O,n) A(1l,n) A(2,n) A(3,n) A(4,n)
. 00000 0.0 0.0 <0 9.0
} J026500008 8- §:3 23
§ 9:2933333333 027000000020 940 9.9 2.9
% 0. 5833333333 0.€904761905 0.0 __ 0.9 9-3
g g I3t §idaaiies 8 CaRRIINED 8.8 :
3 %‘553?333335 0.6535857436 0.69316334G7 0.6931488693 9.9
§ 1430323808 §ediaRIde] Qrenlinaalt i esehS &lmyanio
10 3122%%343%36 O 8930033417 0.6931451962 006931471119 0.693147176

‘where the tenth partial sum, A(0,10), is correct to only one
significant figure. However, iterate A(4,10) is correct to
eight figures since Ln(2) = 0.6931471806.

In this thesis research, Shanks' accelerator has been
tested extensively in conjunction with the simple parameter-
ized contours of integration discussed in Chapters II and
III.

Modification of the basic algorithm of Chapter III con-
sisted of the elimination from the main program of the ter-
mination criterion for the numerical integration given by
equation (16), and, instead, performing the integration for
a finite number of terms. These addends of equation (16)
were stored ina linear array and, subsequently, transformed,
within the main program in accordance with equation (28).

The accelerator did not enhance the rate of convergence
of the numerical inversion process for any of the cases
investigated. In fact, if the number of terms of An’ which
are transformed, becomes sufficiently large so that the

summation of the addend contributions of equation (16)

approaches the correct result, the transformation will

31




decrease the accuracy of the result as the denominator of

equation (28) becomes small.

Appendix A contains the program listing for the simple

parameterized contour of integration in conjunction with
Shanks' accelerator.
Shanks [19] discusses transformations of higher order.

These transformations may be worthy of investigation.
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VII., LOCATION OF FUNCTION SINGULARITIES

The criteria of Chapter II for the distortion of the
Bromwich contour include the requirement that all of the
singularities of a function f(s) be to the left of the con-
tour. Heretofore, the discussion has assumed that the loca-
tion of these singularities was known. Indeed, this is not,
in fact, always the case. In this chapter we investigate a
method of determining the location of the singularities of
f(s) when such information is either not known or is diffi-
cult to obtain analytically.

To see how one can proceed without knowing where the
singularities are, consider the simple case

f(s) = T—s——g (30)

s +a

for the particular values of a = 0,125 and t = 2w,
We use a simple parabolic contour given by equation (18)

with B=1] and with A, which we denote by the symbol Xq in the

discussion to emphasize its actual significance, being given

various values. If we plot the result of the inversion

A

versus the starting position x the result is as shown in

oﬁ
Figure 3. i

For values of X, less than zero, the result is 0,00,
For X in the range from about 0.2 to 2.0, the result is

0.707107. For Xq larger than about 2.0, the result is near

B A
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0.7 but is sensitive to the precise value of xo. For X, in
the range from 0.0 to 0.2, the result exhibits a "spike"

and a very significant change from 0.0 to 0.707107.

1.0 o
;
s A~
r [
NS s
i
i
o ™
= -0.0 p————ro
. ‘ W
i
-0.5 o
}
-1.0 . T 1 1 ) ; : 2 s 3 1 L X LG ! i -1
e 3 . ? 71 xa . S
Figure 3. F(t) vs contour starting position for
cos(at). Value of inverse of s
for t = 2r as a function 2 2
of starting abscissa X5 N o L)

We can explain this behavior as follows, For X, less
than zero, the singularities are on the wrong side of the
contour and we simply get the wrong answer. For X, in the
neighborhood of 0.0 to 0.2, the contour passes so close to
the singularity that the trapezoidal integration scheme is
not accurate and experiences difficulty in getting an
accurate value either for the right answer, 0.707107 or for

the wrong answer 0.0, For X, in the range from 0.2 to 2,0

the singularities are on the correct side of the contour and
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we get the correct answer. For X, larger than 2.0, there are
numerical difficulties, probably due to oscillation or to

the effects of the exp(st) factor for s having large real
part.

We have done the same thing with many other transforms
and have found the same behavior. Our experience leads to
this suggestion for cases where the user does not know the
location of the singularities. Perform the calculation for
a number of different values of x5 and plot the results as
in Figure 3. The correct result is the ordinate of the
rightmost plateau, before oscillations or other numerical
difficulties have had a chance to introduce inaccuracies,

In the case illustrated in Figure 3, there were only two
plateaus, one corresponding to all the singularities lying
on the wrong side of the contour and one corresponding to
all the singularities lying on the correct side of the con-
tour. However, with more singularities, one might expect

to have several plateaus, only the rightmost of which repre-

sents the correct result.
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VIII. THE HYPERBOLIC TANGENT

In Chapter II it was stated that great advantage accrues
from distorting the Bromwich contour as long as the process
of distortion does not cause the contour to cross over a
singularity of f(s). In this chapter we investigate a typi-
cal case in which it is impossible to satisfy this condition.

The function
g oS
f(s) = = tanh(1?) (31)

has an infinite sequence of simple poles on the imaginary
axis at points s = t(2n+1)g . By other methods it may be
shown that this function is the transform of the square wave
function shown in Figure 4. In this chapter we investigate
the extent to which our present methodology is capable of

obtaining this square wave.

re
l—

i
|
|
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Figure 4. Square wave function.

The convergence of the numerical integration has been

assured by bending the contour to the left in all other cases




onegmn T e TR N R A SR o S i s

epon——

reported in this thesis. Accordingly, we do so in the pres-

ent instance. This implies that we must pass between two
poles as the contour bends to the left and all of the in-
finite number of poles above the point where the contour

crosses the imaginary axis thus fall on the wrong side of

2t st i A A R

the contour and are not included on the left. Thus, in
effect, our procedure is finding the inverse Laplace trans-
form of a substitute function which has only a finite number
of poles coinciding in location with those of the given
function f(s) and having the same residues., There is some
reason to hope that the inverse of the substitute function
will be essentially similar to that of the given function,
at least for sufficiently small values of t.

Indeed we do find this to be the case. SUBROUTINE CURVE
of the algorithm of Chapter II was modified to formulate
a simple parameterized curve, which utilized the Bromwich
contour for numerical integration in its initial segment,
starting from a position s=y on the positive real axis and

continuing until the elevation of a finite number of poles

is reached. The second segment of the simple parameterized
curve which was used consists of the parabola of equation

(18). :This parabolic arc allowed the integration contour
to cross the imaginary axis between adjacent poles of the !
function f(s). Such a contour is indicated in Figure 5.

The termination criterion which was used in this case

is identical to that described in Chapter III. All other

1 S PRI [y

program input values remained unaltered from the form of their

._
3
3
1
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Figure 5. Contour of integration for the hyperbolic
tangent.l Special contour for inversion of
f(s) = 5 tanh(as/2). It starts at x_,
rises veftically, and then follows a Sara-
bolic path between two poles.
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previous presentation with tl¢ exception that the integer
JJJJJ, which selected the number of function poles to be
encompassed by the contour was added. The program listing

appears in Appendix A.

The approximate solutions F(t) obtained by numerical
inversion of the substitute function for the f(s) given

:5 by equation (31) are shown graphically below in Figures 6-9.

- ol sl e oo gida e o

Figure 6 is a reproduction of five periods of the square
wave of Figure 4 with a = 10.0 and the first 100 poles of
;f f(s) above the real axis to the left of the contour of in- j
tegration. Figure 7 is a similar picture of the same F(t)
with o = 5.0 and the first 150 poles of f(s) above the real

axis encompassed by the contour, with only one period of the i

wave form. Figures 8 and 9 are analogous to Figures 6 and 7,
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Figure 6. Numerical approximation of five cycles of the
square wave function with 100 poles to the
left of the contour.
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Figure 7. Numerical approximation of one cycle of the
, square wave function with 150 poles to the !
. left of the contour. i




Figure 8.

Figure 9.

Numerical approximation of five cycles of
the square wave function with 7 poles to
the left of the contour.

2. p

-

Numerical approximation of one cycle of the

square wave function with 7 poles to the
left of the contour.




j : respectively; however, only the first seven poles of f(s)
above the real axis were included on the correct side of the
ﬂ contour of integration.

) | The reader should be aware that the increment of t used
in the above series of graphs differed in each case. The

' inaccuracies shown in Figures 6-9 are partially due to the
assumptions inherent within the employment of our algorithm,
and, also, partially due to the fact that the plotter simply
Tl connects points sequentially. This can also be seen in the
slope of the graphs at t = o, 2a, etc.,, which is a function
of the particular At employed and not an inaccuracy of the

ﬁ algorithm.

Efforts to accomplish numerical inversion of the f(s)
of equation (31) using the steepest descent contour were
unsuccessful. The difficulty in using this contour appeared
to be related to an adverse influence from the proximity of
the function poles to the v = O contours near the imaginary
axis. The algorithm was overtaxed in this vicinity and
could not track the contour; consequently, further investi-
gation was not attempted.

In summary, we conclude that the effect of substituting
a function which has only a finite number of poles which are
coincident in location with the first n poles of a function

f(s), which possesses an infinite number of poles spaced incre-

mentally along the imaginary axis, produces an inverse

approximation to the inverse of the given function f(s).

as more of the function singularities are encompassed by the

f
:
i
:
!
f The accuracy obtained with such a substitution is increased
8

distorted contour.




IX. FACTORS WHICH INFLUENCE ACCURACY

b Heretofore, our discussion has included the treatment of

? contour integration, utilizing a simple parameterized curve ]
for that purpose, from two perspectives. The first of these
methods, discussed in Chapter II1I, incorporated a termina-

tion criterion which required a prescribed number, N, of

successive integrand contributions each to have smaller mag-
nitude than a specified epsilon. The second of these methods,
discussed in Chapter VI, performed numerical integration for
a finite number of points spaced along the contour with sub-
sequent employment of Shanks' accelerator in an endeavor to
enhance convergence,

The first of these methods, we have found, was highly

successful when employed with the proper point spacing, and
a very tight termination criterion, namely, a small epéilon :1
and large N. The second method has not, in our investiga-

tions, been found to be successful, and need not be discussed

further. The issue then becomes one of selecting the proper

e e A b S e

combination of step-size, epsilon, and N to provide an
accurate and economical result. ;{

In order to make such an appropriate selection of these ‘
parameters, it is necessary to examine the factors which in-

fluence accuracy. These factors include: the step-size along

the contour, the termination criteria, and the oscillation.
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Consider a simple case, which we have chosen, along a
path for which the oscillation is insignificant. The accu-
racy in such a case is influenced, if the termination
criteria are sufficiently stringent, only by the step-size
along the contour of integration. Thus dealing with the
transform

. s° + a

whose inverse is the cosine function, yields a plot of the
logarithm of the percent error of F(t) versus the step-size,
A, as shown in Figure 10, 1In this case, the contour of in-
tegration was the simple parameterized curve of equation
(18) with A = 0.3, B=1.0, a = 0,125 and t = 27,

The sequences of points in this plot are all obtained by
maintaining N constant (N=3) and plotting log10 percent error
versus A with epsilon as a parameter.

Four such parameteric plots appear in the figure below
corresponding to the values of epsilon (EPS) as shown in
the legend.

Clearly the accuracy of the results may be seen to behave,
in a general sense, in the manner shown in Figure 11, where
EPS

< EPS, < EPS3 < EPS

1 2 4°

When the termination criteria are tight, namely, when EPS
is small and N is, at least, greater than one, the percent
error is a narrowly banded, roughly linear function of the
integration step size, A, over a range from about 4 = 0,02

to A = 0.2, This corresponds to EPS1 in Figure 11.
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in other cases, shown schematically in Figure 11, the accu-

%

racy of the result cannot be improved indefinitely by decreas-

ing, A. Rather, there is a point, which differs in each case,
beyond which the accuracy is decreased as the step size is
decreased. The behavior is complicated by the fact that the

effects of changes in step-size and changes in termination
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3 Figure 10. Logarithm of percent error versus step size
2 for the cosine function.
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criteria are not themselves disjoint., Making the step-size
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Figure 11, Schematic representation of accuracy factors,
Behavior of the logarithm of percent error
versus step size A as a function of the ter-
mination criterion EPS,

smaller results in meeting the termination criteria at an
earlier point along the path of integration and thus may

i actually reduce overall accuracy.

One way of dealing with this matter, of course, is to

R ——

revise the termination criteria so as to remove this inter-

dependence. We simply have not experimented with using

alternate forms for the termination algorithm. Instead, we

suggést the following viewpoint to the user who wishes to

assure that he obtains results with a specified accuracy.
He should first of all employ a very strict termination

criterion and use a succession of rather small values of

%
|
|




step size, and should also vary the starting point on the
contour. In this way he should be able to establish an
evaluation having even greater accuraéy than he requires.
Then, selecting what seems to be a good starting point and
keeping to it, he should increase the step size until the
result is no more accurate than he requires, .He should
observe how much saving in computer time (or in the number

of calls to VALUE) this affords and should not increase step

size beyond a reasonable point. Then he should loosen the
termination criterion progressively, measuring the saving

in computer time versus the possible loss of accuracy,

N — .

stopping short of the point where he cannot rely on obtain-

.

ing the required accuracy. 3

In many cases where numerical integration is employed

to obtain a result whose correct value is Y, the numerically

ug produced approximation y approximately satisfies a relation

y =Y + aa” (33)

where a and m are unknown constants. The exponent m may
frequently be established, once and for all, for the type

of integration being used, and, for individual integrands,
the correct value, Y, from two 2valuations, Yy obtained with
4 = Al and Yo obtained with A = A2, by using the extrapola-

tion formula

ey e
¥ Gevas ¥y T YNy (34)

a
|
i
1
|
|
i
|
i
|




s M el R NSRRI 5 i, » i s

We have 1nvestigat§d this method of obtaining improved accu-
racy for our inversions and have found that with the inter-
dependence between termination criteria and step size, the
numbers a and m were both rather large and difficult to
establish - in other words, the extrapolation was not success-
ful in producing improved values. Our conclusion was that
it was more efficient from a computational point of view
simply to use a sufficiently small step size and an appro-
priately matched set of termination criteria so as to be
able to obtain an accurate answer without interpolation.
However, a suggestion for further study of this matter

is made at the end of the next chapter.




X. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

This thesis has demonstrated that numerical integration
along a suitable contour in the complex plane, thus implement-
ing the complex inversion integral formula, is an effective
way of obtaining numerical values for the inverse Laplace
transformation of a given function.

The success of the procedure, i.e., its efficiency, avoid-
ance of inaccuracy due to oscillation, and its termination
after including only a reasonable number of addends in the
numerical sum, is related to the fact that the contours chosen
bend to the left as they rise, thus taking advantage of the
exp(st) factor in the integrand of the inversion formula.

Although there are some theoretical advantages to what
we have called the '"steepest descent" contour which follows
a v=0 path, the algorithm which permits following such a path
requires repeated evaluations of the integrand, many of which
are not actually used in forming the summands for the numeri-
cal summation. We have found by investigating almost 100
cases for which known inverses are available "in analytic form,
that it is more efficient to use a simpler contour than the
steepest descent path. By using what we have called a simple
parameterized curve, we have devised a procedure which makes
use of every evaluation of the integrand. We have found that

the penalties of not following a steepest descent curve,

et i
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namely an increase in oscillation of the integrand along the
path, may be made quite tolerable by using any of a number
of simple curves. In particular, most of our successful work
has been with a simple parabola. Our algorithm, however,
includes the output of information which can serve to alert
the user to the possibility of inaccuracy due to oscillation
and thus suggest to him that he might select a different form
for the path.

We'have even been successful in obtaining the inverse of
a function which has an infinity of poles spaced along the
imaginary axis. In doing so we violated the principle
that all poles of the transform must be to the left of the
contour. Nevertheless the results are quite satisfactory.

Our success and accuracy have been so gratifying that
we venture to suggest that our method may prove to be an
efficient alternate method for the evalution of exotic func-
tions for which other methods are slowly convergent or in-
volve series the coefficients in which are difficult to
obtain. For example, case 92 in Appendix B shows the suc-
cessful evaluation of the rather uncommon Struve function.

The original reason for attempting to employ numerical
integration in the complex plane as a means of inverting a
Laplace transformation was that alternate methods employed
by Hiep and Zargary in conjugated heat transfer problems
were simply not accurate enough. They led to physically

impossible results with some temperatures in the media below

sink temperature and others above source temperature. .a




this thesis we have not restudied these heat transfer prob-

lems and recommend that this be dor2 using our methods of
inversion. There is some reason to believe that the diffi-
culty encountered by Hiep and Zargary will not be encountered
if our method is used, but we are not prepared to substan-
tiate this claim at this time.

Also it might be of use if the effects of varying the
available parameters (shape of curve, spacing of points,
starting point of curves, termination criteria, etc.) were
to be investigated further so that a user would be better
prepared to deal with indications of inaccurate inversion
or inordinate requirements for computer time. Our own
numerical experiments were invariably so happily successful
that we have not encountered need for such information.

For functions f(s) for which it may be difficult to
locate the singularities, we have shown that varying the
starting point of a simple parameterized contour permits
selecting an optimum contour in the sense that one can be
assured that all singularities are to the left of the
curve and also that the curve does not reach far enough to
the right to impose numerical difficulties with large posi-
tive exponentials.

At the end of the preceding chapter we indicated that
we did not find it profitable to employ extrapolation as a
means of obtaining improved accuracy. However, this is

probably worth looking at again, and our suggestions for

doing so are as follows. First employ a termination criterion




which is disjoint from the integration step size in the

sense that the location, along the path of integration, of
the point where termination occurs, is independent of step
size. One way of doing this is to employ an epsilon in the
termination criterion which is itself the result of multiply-
ing a fixed, input epsilon by the step size. Then the
extrapolation has a chance of being successful. So as to
maintain optimum computational efficiency, one should use
what is called Richardson extrapolation in which the evalua-
tion points for the larger step size are themselves included

among those for the smaller step size.

:
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APPENDIX A
LISTING OF COMPUTER PROGRAMS AND SUBROUTINES

The computer programs and principal subroutines that we
ha?e prepared and tested during our investigation are all
listed within this appendix., Section A-~1 contains the user's
instructions glossary, flowchart, and program listing for the
simple parameterized curve, "Section A-2 is a similar treat-
ment for the steepest descent contour. Section A-3 contains
the user's instrucfions and program listing for the simple
parameterized curve procedure adapted fgr use with Shanks'
accelerator. Section A-4 contains the same information for
adaptation of the simple parameterized curve for use with
the nyperbolic tangent function described in Chapter VIII,.

It is hoped that sufficient detail has been provided to
enable a user to adapt one of these programs to his purpose
in an efficient manner. However, if additional insight is
required, it may be necessary to refer to the chapter of
this thesis in which the algorithm is developed. This is
particularly true in the cases of Sections A-3 and A-4; the
development in these sections has not been repeated where it
is equivalent to that of Section A-1.

Functions DREAL and DIMAG and SUBROUTINES CPOWER and
CLOG, if they are required, are listed within Chapter III,
as'is é‘typical example of SUBROUTINE VALUE. Additionally,
all functions f(s) which have been investigated during this
research have their applicable SUBROUTINE VALUE listed within

Appendix B,
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SECTION A-1: THE SIMPLE PARAMETERIZED CURVE
USER INSTRUCTIONS
This is the FORTRAN IV program for the numerical inver-
sion of the Laplace transformation of a function f(s), which
performs contour integration along a distorted Bromwich con-
tour in the form of a simple parameterized curve. The fol-
lowing instructions are provided to assist the user in
familiarizing himself with the program so that he can adapt
it to his particular requirements.
1. SUBROUTINE CURVE is a user supplied group of instructions
which formulates the numerical integration contour. The
program listing presently contains a simple parabola, which
may be utilized directly if desired.
2. SUBROUTINE VALUE is a user supplied subroutine which
calculates the real and imaginary components for g(s) =
exp(st)*f(s) = u(s) + iv(s). For examples of preparation
of this subroutine the user is referred to the test cases
of Appendix B.
3. The mandatory input variables to the main program are
as follows:
(a) AA - REAL*8 starting position (S=AA) on the real
axis of the contour of integration. (Also denoted
by A in equation (18) and X, in Chapter VII.)
(b) AL - REAL*8 value of any constant associated with
the function f(s). (Note: If the function f(s)
involves more than one constant, the calling state-
ments to SUBROUTINE VALUE must be modified accord-

ingly.
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(c) DELP-REAL*8 increment of the p-parameter leading to

spacing of points along the contour of integration.
(d) T - REAL*8 time for which F(t) is desired.
4. Input parameters which may be altered by the user, at
% his discretion, are as follows:

(a) EPS - REAL*8 tolerance parameter for the termina-

tion of numerical integration., The program listing

i presently contains a value of 1.D-11,
kﬁ (b) NUMBER - INTEGER*4 number of successive addend con-

tributions less than the specified value of EPS
for which numerical integration is terminated.

S. The output variables which are printed as output by pro-

i1l gram are defined below:

(a) AA starting position on the real axis

(b) SUM the value of F(t) obtained by numerical
inversion of f(s). (cf. equation (16))

(c) SUMA the absolute value of the summation of the
the addend contributions of the numerical
integration, (cf. equation (14))

Ef (d) X the final value of x on the contour at which
integration was terminated

(e) Y the final value of y on the contour at which
integration was terminated

(f) LOSC the number of sign changes between successive
addends encountered during numerical integra-
tion

a (g) MMMMM the taotal number of calls made to SUBROUTINE

it < . -

VALUE during the numerical integration process.

34
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6. The output of these variables is as follows:

AA, SUM, SUMA, X, Y, LOSC, MMMMM

s A D e il i
wew G T

7. The time (seconds) required to perform the numerical inte-
B E gration is printed on a line immediately preceding the items | |

listed above.

Sf 8. As previously described, the program will perform numeri- | ;
. cal integration along one simple parameterized curve. If the
user desires, the program may be modified to '"sweep" the con-
fl tour of integration over a range of starting values, AA, (cf.
Chapter VII). This may be quickly accomplished in the follow-
ing manner.,
(a) Replace the value of the integer KSTART from 1 to
the number of contour integrations desired.
(b) Replace the REAL*8 value of AA with the following ?
statement |

AA = XSTART+AK*XINCRM

where | 3
XSTART = the smallest starting value of tiae
‘ contour of integration the user |
B | desires 13

XINCRM = the Ax between starting positions
of successive contours of integration
must also be supplied,

A it b YR i

i Thus, the program will perform numerical inversion along i 9
KSTART contours of integration which differ only in their 3
: : starting positions along the x axis. The user may then

observe increases or jumps in the value of the output variable

SUM between successive integrations, enabling him to ascertain

the locations of function poles., The utility of this proce-

T > o " e s e " o c s ali e

dure is discussed in depth in Chapter VII,

55




9. If SUBROUTINES CPOWER and/or CLOG are called by SUBROU-
TINE VALUE in conjunction with use by this program, NCALL

and/or MCALL must be dimensioned and initialized to zero

wichin the main program and added to the calling statements
to SUBROUTINE VALUE. Additionally, any powers, other than
integer values, must be entered within the main program and

passed within the calling statements to SUBROUTINE VALUE.




GLOSSARY OF VARIABLE NAMES

;i‘ VARIABLE DESCRIPTION LEGEND

4 AA starting position on the real axis 2

} of the simple parameterized curve

1 ADD computed value of the addend of the 1

iﬂ numerical integration

ii ADDA absolute value of the addend of the 1

: numerical integration

1¢§ ADDDLD saved value of the previous addend 1

1 ~ contribution

i}% AL constant associated with f(s) 2
; DELP increment of point spacing along the 2

|| simple parameterized curve

EPS tolerance parameter for termination 4
of the numerical integration process

3 KOUNT integer counter utilized to terminate 1
a1 the numerical integration process

KSTART integer counter for the number of times 4
the numerical integration is desired
to be performed, using different start-
ing positions

LOSC integer counter utilized to record the 3
: number of sign changes between succes-
il sive addends

MMMMI integer counter to record the total 3
number of calls made to SUBROUTINE VALUE
during the numerical integration

NN integer counter to record the total 1
number of addend contributions

NUMBER integer input of the desired number of 4 E
successive addend contributions less
than a specified epsilon for termination

P parameter of the simple parameterized 1
curve ’
PROD flag utilized to detect oscillation of 1

the integrand
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SUM

SUMA

TEST

vo

vo

X0

YO

P RSO EASNCT s i B = L s g b o e Bl s M S S R LS

total addend contribution for the
numerical integration process

absolute value of the total addend
contribution for the numnerical
integration process

time for which F(t) is to be evaluated

flag for termination of the numerical
integration process

real part of the function g(s)
previous value of U

imaginary part of the function g(s)
previous value of V

real part of s

previous value of X

imaginary part of s

previous value of Y

LEGEND

. No action required by the user

. Mandatory user input

1
2
3. Appears as program output
4

May be altered by the user at his discretion

-
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i START

ESTABLISH THE
SYSTEM LIMITS
AND PARAMETERS
INITIALIZE
SET THE TIMER

CALL
CURVE AND VALUE
OBTAIN
INITIAL
U AND V

1 AR 0 S A et e s MM e o S A AR

N ikt i A s Din s N
-

T "
DO 400 ]

i INCREMENT THE

| | STARTING POINT

| COMMENCE :

; NUMERICAL z

INTEGRATION

e e i

l




\

COMPUTE THE
INTEGRAND
AND ITS
ABSOLUTE
VALUE

:
i
%
.

SUM THE
CONTRIBUTIONS
OF THE
INTEGRAND
AND ITS
ABSOLUTE VALUE

ESTABLISH
THE SIGN OF
THE INTEGRAND




COMPUTE THE
PRODUCT OF THE
OLD AND NEW
INTEGRANDS

f

LOSC
IF THE COUNTER
T.0.D+0 FOR THE
PRODUCT | NUMBER OF
SIGN CHANGES
IS INCREMENTED

r

KOUNT
IF THE COUNTER
LT.EPS | FOR INTEGRAND
TEST MAGNITUDE
IS INCREMENTED

<

r

IF
LT ,NUMBER

3.GO TO 200




400

CONTINUE
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SECTION A-2: THE STEEPEST DESCENT CONTOUR
USER INSTRUCTIONS

This is the FORTRAN IV program for the numerical inver-

sion of the Laplace transformation of a function f(s), which

performs contour integration along the steepest descent path

in the complex plane. The following instructions are pro-
vided to assist the user in familiarizing himself with the

program so that he can adapt it to his particular require-

ments,

1. SUBROUTINE XMARCH is a subroutine which tracks a speci-

fied v=0 contour (steepest descent) in the complex plane,
once this contour has been intersected for the first time,.
As shown in the program listing, the following two equations
X = XHOLD - 1.D-1*DCOS(THETA)
Y = YHOLD + 1.D-1*DSIN(THETA)
march the numerical integrations in the favorable direction
along the contour. The equations are parametric in THETA,
which is the search angle provided by SUBROUTINE ROTATE.
The 1.D-1 is a polar radius which may be altered to a larger
or smaller increment by the user, or accepted as it appears.
2, SUBROUTINE ROTATE increments the angular search angle
THETA in order to locate a new point on the v=0 contour. The
angle is presently incremented by 5.D-2 radians with each 1
call to the subroutine. This may be altered as required.
3. SUBROUTINE VALUE is a user supplied subroutine which cal-

culates the real and imaginary components for g(s) = exp(st)

x f(s) = u(s) + iv(s). For examples of preparation of this




subroutine, the user is referred to Appendix B.

4, The mandatory input variables to the main program are

(a)
(b)

(e)

(d)

1 (e)

AA -
AL -

DELY

NREG

listed as follcws:

REAL*8 starting position (s=AA) on the real axis
REAL*8 value of any constant associated with

the function f(s). (Note: If the function f(s)
involves more than one constant, the calling

statements to SUBROUTINE VALUE must be modified

accordingly.)

~ REAL*8 increment of the point spacing along
the Bromwich contour. (Note: to alter the point
spacing along the v=0 contour, the user is
referred to 1 above.)

~ INTEGER*4 input value which specifies the
first, second, third, etc. v=0 contour above
the positive real axis, which is to be followed

in the numerical integration process.

T - REAL*8 time for which F(t) is to be evaluated.

:V 5. Input parameters which may be altered by the user, at

b (a)

(b)

k| his discretion, are listed below as follows:

EPS - REAL*8 tolerance parameter for the termina-

tion of numerical integration. The program

listing presently contains a value of 1.D-11.

NUMBER - INTEGER*4 number of successive addend

contributions less than the specified value of

EPS for which numerical integration is terminated.




6.

The output variables which are received from the program

are defined below:

(a) MMMMM - the number of calls made to SUBROUTINE VALUE

(b) SUM - the total addend contribution for the numeri-
cal integration

(c) SUMA - the absolute value of the total integrand
contribution for the numerical integration

(d) EL - the computation time in seconds required for
the process

A sample program output is as follows

0 724724D+0  0.324972D+1 g‘}ﬂmm} s 5 dabrianl

section
26;37107D+0 0.326734D+1 SUM&§UMA S Gud of

0.71090D+1 EL computation
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VARIABLE

AA

ADD

ADDA

CHECK

DELY

EPS

KOUNT

KSIGN

LEVEL

NREG

NUMBER

Py

GLOSSARY OF VARIABLE NAMES
DESCRIPTION

starting position on the real axis of
the Bromwich contour segment of the
integration

computed value of the addend of numeri-
cal integration

absolute value of the addend of numeri-
cal integration

constant associated with f(s)

flag to ascertain when a v=0 contour
crossing has occurred

increment of point spacing along the
Bromwich contour segment of numerical
integration

tolerance parameter for termination of
numerical integration

flag to ascertain when a contour crossing
has occurred

integer counter used internally for test-
ing contour regions

integer counter utilized to terminate
the numerical integration process

integer counter utilized to record the
number o f v=0 contour levels crossed

integer flag assigned to regions of
positive and negative v

integer counter for the number of calls
made to SUBROUTINE VALUE during each
segment of the numerical integration
process

the desired v=0 contour level above the
positive real axis which is to be tracked

integer input for the number of succes-
sive addend contributions less than the
tolerance parameter required for termi-
nation

LEGEND

D B T T o S T v SV ¥ T e R =
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g SuM total addend contribution for the 3
b | - numerical integration process
9 SUMA absolute value of the total addend 3
| ' contribution over the contour of
r? integration
3 T time for which F(t) is to be evaluated 2
TERM termination parameter for the absolute 1
value of the addend
fqi TEST Flag to ascertain when a contour 1
bl | crossing has occurred
THETA search angle used in the contour 1
tracking algorithm
THETAO previous value of THETA 1
THNEW predicted angular location of a new 1

b | point on the contour from a known
’ previous point-

THONE coordinate utilized in linear inter- 1
polation
THTWO coordinate utilized in linear inter- 1
polation
1 U real part of g(s) 1
i UHOLD previous value of U 1
E v imaginary part of g(s) 1
' VHOLD previous value of V 1 ;ﬂ
VNEW actual value of the imaginary part of 1 ?
; g(s) for the predicted v=0 location { 1
i VOLD previous value of V 1
X real part of s 1
XHOLD previous value of X 1
Y imaginary part of s 1
YNEW predicted elevation of the desired v=0 1
contour level
%




LEGEND
No action required by the user

Mandatory user input

Appears as program output

May be altered by the user at his discretion
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: ESTABLISH THE
| PARAMETERS
5 INITIALIZE
| SET THE |
i TIMER |
CALL | 4

CURVE AND VALUE
OBTAIN THE
INITIAL U AND V
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200
INCREMENT Y
COMMENCE
VERTICAL MARCH
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CALL
CURVE AND VALUE

r

COMPUTE THE
VALUE OF THE
INTEGRAND AND
ITS ABSOLUTE
VALUE

SUM THE
CONTRIBUTIONS
OF THE
INTEGRAND
AND ITS
ABSOLUTE VALUE

IF

EQ. 2

SIGN

ESTABLISH
THE SIGN
OF V




COMPUTE THE
PRODUCT OF THE
OLD AND NEW V

IF
PRODUCT

LT.OD+0

K SIGN

THE COUNTER
FOR THE
NUMBER OF
CONTOUR LEVELS
IS INCREMENTS

CONDUCT LINEAR
INTERPOLATION
LOCATE
DESIRED POINT
ON THE
V=0 COUNTER

LT .NREG




RETAIN THE
X, Y, U, AND V
VALUES OF
THE POINT
ON THE COUNTER

COMMENCE THE
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